課程目標:
使學生了解如何建立連體(包含固體及流體)之數學模式與如何將此數學模式應用於物理問題。
課程內容概要:
1. Mathematical preliminaries: Vectors and Cartesian tensors
2. Kinematics of a continuum: Deformation gradient, Polar decomposition theorem, Material description and spatial description of motion.
3. Balance laws of mechanics: Conservation of mass, Linear momentum balance, Angular momentum balance.
4. Stress: Cauchy’s theorem of stress, Piola-Kirchhoff (Nominal) stress
5. Material constitutive laws for Solids and Fluids: Material objectivity, Material symmetry, Constitutive equations of isotropic and anisotropic solids. Elastic inviscid fluid, Newtonian fluids, Neohookean materials.
6. Fluid Mechanics: Incompressible fluids, Incompressibility condition, Navier-Stokes equation, Reynolds number and some simple examples.
7. Solid Mechanics: Simple problems of linear elasticity and rubber elasticity.
成績計算方式:
1. Homework.............................................................................40%
2. Midterm Exam.......................................................................30%
3. Final Exam............................................................................30%
教科書或主要參考書:
1. “A First Course in Continuum Mechanics”, Y.C. Fung.
2. “An Introduction to Continuum Mechanics”, M. E. Gurtin.
3. “Non-linear Elastic Deformation”, R.W. Ogden.
適合選修對象:
D.丁組博碩學生