Finite Element Method

(Close book, 100 minutes, 70% to pass)

1. (i) Sketch one of the zero energy mode shape for a 4-node isoparametric plane element with reduced integration rule. (ii) Explain why the strain energy at the reduced integration point is zero? (15%)

2. A 4-node isoparametric element is shown below. Compute the Jacobian matrix [J] at point A. (15%)

3. Use appropriate Gauss integration rule to obtain the exact solution for the following integral: (20%)

$$I = \int_0^2 \int_0^2 (3y^2 + 2x) dx dy$$

4. Consider a beam of constant EI supporting a uniformly distracted load q_0 as shown. The differential equation of the beam is $EIv(x)^{""}+q_0=0$ for $0 \le x \le L$, where v(x) is the lateral deflection of the beam. The essential boundary conditions of the beam are v(0)=0 and v'(L)=0. The nonessential boundary conditions of the beam are EIv''(0)=0 and EIv'''(L)=0. Assume the approximate deflection of the beam is $\tilde{v}(x)=ax(2L-x)$. Use the Galerkin method to find the generalized d.o.f. a in the approximate deflection. (20%)

5. A 2-bar truss is subjected to a concentrated force P as shown. Assume both bars have the same cross section area A and the same modulus of elasticity E. Use the finite element method to calculate the displacements at node C, the reactions at nodes A and B, and the axial forces in both bars. (15%)

- 6. The following True-False questions refer to finite elements based on assumed displacements. (15%)
- () A. The interpolation functions in FEA are almost always trigonometric functions.
- () B. Within an element, the calculated strains are less accurate than the displacements.
- () C. The stiffness matrix [K] of a structure is usually unsymmetric.
- () D. The normal and shear strains in the three-node triangle element are always constants.
- () E. When a Q4 element is subjected to pure bending, it displays shear strain and bending strain.

Qualifying examination (Elasticity)

(1) Let $\{i, j, k\}$ be a Cartesian basis, and let

$$m_1 = (5i + 6j - 3k)/\sqrt{70}$$
, $m_2 = (j + 2k)/\sqrt{5}$, $m_3 = (3i - 2j + k)/\sqrt{14}$ be three unit vectors. The components of a tensor $T \inf\{i, j, k\}$ are

$$T = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix}.$$

Calculate the components of T in $\{m_1, m_2, m_3\}$ (25%)

(2) Show that for the case of plane stress, in the absence of body forces, the equations of equilibrium may be expressed in terms of displacements u_1 and u_2 as follows:(15%)(v: Poisson's ratio)

$$\frac{\partial^2 u_1}{\partial x^2} + \frac{\partial^2 u_1}{\partial y^2} + \frac{1+\nu}{1-\nu} \frac{\partial}{\partial x} \left(\frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} \right) = 0$$
$$\frac{\partial^2 u_2}{\partial x^2} + \frac{\partial^2 u_2}{\partial y^2} + \frac{1+\nu}{1-\nu} \frac{\partial}{\partial y} \left(\frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} \right) = 0$$

Are these equations valid for the case of pane strain? (10%)

(3) A rigid disk is welded to an elastic isotropic half-space. A load, P, is applied to the disk as shown. Considering the most general motion of the disk, state the boundary value problem. (Don't solve the problem. Statement must include equilibrium requirements). (25%)

4. The stress field around a cylindrical hole in an infinite solid, which is subjected to uniaxial tension $\sigma_{11} = \sigma_0$ far from the hole, is given by

$$\sigma_{11} = \sigma_0 \left[1 + \left(\frac{3a^4}{2r^4} - \frac{a^2}{r^2} \right) \cos 4\theta - \frac{3a^2}{2r^2} \cos 2\theta \right]$$

$$\sigma_{22} = \sigma_0 \left[-\left(\frac{3a^4}{2r^4} - \frac{a^2}{r^2} \right) \cos 4\theta - \frac{a^2}{2r^2} \cos 2\theta \right]$$

$$\sigma_{12} = \sigma_0 \left[\left(\frac{3a^4}{2r^4} - \frac{a^2}{r^2} \right) \sin 4\theta - \frac{a^2}{2r^2} \sin 2\theta \right]$$

Using the principle of superposition, calculate the stresses near a hole in a solid which is subjected to shear stress $\sigma_{12} = \sigma_0$ at infinity.(25%)

