Qualifying examination (Elasticity)

(1) (a)Express the compatibility equations for the case of plane strain. (15%)(b)Given the plane strain distribution (10%)

$$\varepsilon_{xx} = 3x^{2}y$$

$$\varepsilon_{yy} = 4y^{2}x + 10^{-2}$$

$$\varepsilon_{xy} = yz + x^{3}$$

are the compatibility equations satisfied?

(2) Consider two 90° rotations of axes x_1, x_2, x_3 -one about x_1 and one about x_3 . Show that for the elastic constants to be invariant with respect to both of these transformations, we must set (25%)

$$\begin{split} C_{1122} &= C_{2233} = C_{3311} = C_{2211} = C_{3322} = C_{1133} \\ C_{2323} &= C_{3131} = C_{1212} \\ C_{1111} &= C_{2222} = C_{3333} \end{split}$$

(3) Determine the stress concentration factor for the 2-D infinite medium with a circular hole in it loaded as shown in Fig. below. The quantity P is a stress magnitude. (25%)

(4) The stresses in a circular cylinder of radius a with x_3 axis as the axis are given by

$$\sigma_{13} = \sigma_{31} = -\mu \beta x_2$$

$$\sigma_{23} = \sigma_{32} = \mu \beta x_1$$

$$\sigma_{11} = \sigma_{22} = \sigma_{33} = \sigma_{12} = \sigma_{12} = 0$$

where μ and β are constants. Show that the lateral surface of the cylinder is traction free, i.e., show that $\mathbf{t_n} = 0$ on the surface shown in the figure. (25%)

- 1. 請解釋下列名詞:(15%)
 - (a) response spectrum
 - (b) classical damping matrix
 - (c) earthquake design spectrum
- 2. Determine the natural frequencies and mode shapes for the uniform, rigid bar $(EI = \infty)$ with mass \overline{m} per unit length. u_1 : translation, u_2 : rotation of the mass center. (30 %)

- 3. Please derive the complete solution for at-rest initial conditions of an undamped SDF system subjected to a harmonic force. i.e. $m\ddot{u} + ku = P_0 \sin \omega_n t$. Note: $\omega_n = \sqrt{k/m}$. (25%)
- 4. Please find the displacements of the system (Fig. 4a) under the response-spectrum as shown in Fig. 4b. Solve this problem by using the square-root-of-sum-of-squares rule. (Given $m = 20 \, Ton$ and $k = 100 \, kN/m$) (30%)

Fig. 4a

Fig. 4b

九十八學年度第一學期博士學位候選人資格考試

考試科目: 工程地質

- 一. 解釋名詞 (34%)
 - (1) 請繪出岩石循環圖(7%)
 - (2) 何謂震央?震源?震度?地震規模?(8%)
 - (3) 何謂交角不整合?非整合?假整合?(6%)
 - (4) 何謂節理?何謂斷層?(4%)
 - (5) 試述板塊邊界可分成哪幾種?(9%)
- 二. 分別以圖示 P 波、S 波、Raleigh wave 與 Love wave 波動傳遞 與介質分子運動方式? (16%)
- 三. 試述 RMR 岩體分類法與 Q 法(14%)
- 四. 試由地質圖(圖1)繪出 AB 剖面可能的地質情況 (12%)
- 五. 試問下列投影圖(圖2)所示岩層的位態(8%)

六. 試定義(8%)並分別各舉出二種原生弱面與次生弱面(8%)。

98 學年度第一學期博士班資格考

科目:土壤力學

考試時間: 100 min

- 一、名詞解釋 (20%):
 - 1. Secondary compression
 - 2. Overconsolidation ratio
 - 3. Thixotropy
 - 4. Critical void ratio
- 二、回答下列統一土壤分類法(Unified Soil Classification System) 之問題 (20%):
 - 1. 說明土壤分類之目的。
 - 2. USCS 中主要之四種主要土壤種類及分類依據。
 - 3. 進行完整土壤分類所需進行之試驗項目及各試驗之目的。
- 三、回答下列有關應力路徑(Stress paths)的問題 (20%):
 - 1. 說明何謂應力路徑及其發展之目的。
 - 2. 繪出 K_0 <1 之 NC 土壤在下列情況下之應力路徑:
 - (a). 排水狀況下基礎下方土壤加載至破壞。
 - (b). 排水狀況下擋土牆後土壤主動破壞。
 - (c). 排水狀況下擋土牆後土壤被動破壞。
 - (d). 不排水狀況下三軸壓縮試驗總應力與有效應力路徑。
 - 3. 推導 p-q diagram 強度參數(a, ψ)及 Mohr-coulomb 強度參數(c, ϕ) 之 關係。
- 四、回答下列有關土壤夯實(soil compaction)的問題 (20%):
 - 1. 說明何謂土壤夯實及其原理。
 - 2. 推導理論 zero air voids curve ($\rho_d = \frac{\rho_w S}{(w + \rho_w S/\rho_s)}$)。
 - 3. 說明現地如何進行夯實品管。
 - 4. 說明如何決定每層土壤夯實厚度。
- 五、回答下列有關土中水的問題 (20%):
 - 1. 說明何謂虹吸現象(capillarity) 及其對現地土壤之影響。
 - 2. 推導土中穩態滲流(steady state seepage) 之控制方程式及對應之假設。
 - 3. 列出求解滲流控制方程式之方法及其適用性。

成大土木系博士班資格考試 軌道工程試題

- 一、以下各小題討論列車的脫軌。
 - 1. 何謂脫軌?
 - 2. 影響列車脫軌行為的因素有哪些,如何影響?
- 二、在過去數十年中,世界上許多鐵路系統皆經歷鐵路改革。
 - 1. 是什麼樣的因素促使這些鐵路系統進行改革?
 - 2. 我國的臺鐵及高鐵是否也需要改革,為什麼?主事者應該考慮哪些因素以決定是否需要改革以及改革的內容?
- 三、本題與軌道的超高有關。
 - 1. 為何軌道需要設置超高?
 - 2. 何謂超高不足與超高過量?
 - 3. 為何設計軌道時需要考慮超高不足與超高過量?

National Cheng Kung University Department of Civil Engineering Pavement Engineering Qualification Exam for Ph.D. Students Open Books and Notes (100 minutes) Fall 2009

1.

Explain the following terms:

- (a) permeable pavement, (b) drainage pavement, (c) rigid pavement, (d) JRCP, (e) rubberlization (25%)
- 2. What are the new features of AASHTO Mechanistic-Empirical Pavement Design Guide (ME-PDG)? (25%)
- 3. What are the major road tests since 1950? Why are these road tests important to pavement engineering? (25%)
- 4. What are the major differences in highway and airport pavement designs? (25%)

鋼鐵材料與結構

2009.10.30

考試方式: Closed Book 考試時間: 100分鐘

1. (40%) Please give detailed explanations for the following questions:

- (a) Please describe how the four chemical elements, phosphorous (P), sulfur (S), hydrogen (H) and nitrogen (N), affect the properties of steel.
- (b) What is "lamellar tearing" phenomenon in steel material? How does it happen? How to solve this problem?
- (c) We usually categorize carbon steels into four categories by their carbon percentages. What are these four categories and their carbon percentages?
- (d) Please list at least two methods to measure the toughness of steel and clearly describe these methods.
- 2. (15%) In LRFD steel design, we use $0.6F_y$ (or $0.6F_u$) as the shear strength of steel to evaluate the shear forces of steel components. Where is the coefficient 0.6 from? Please try to derive it. (F_y) and F_u are the yield and ultimate strength of steel respectively from the tensile test)
- 3. (25%) Consider the following simply-supported beam-column with a concentrated load (F) at the mid-span.
- (1) Please derive the y-direction deflection formula w(x) for this beam-column.
- (2) Please derive the moment formula M(x) for this beam-column
- (3) Please obtain the theoretical moment magnification factor MAF (or B_1) for this beam-column.

Note: Assume linearly-elastic material

4. (20%) Please list the limit states considered for designing the welded/bolted double angle connection shown in the following figure.

